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FREE VIBRATION OF COUPLED DISK}HAT STRUCTURES
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The free vibration of disk}hat structures, such as automotive brake rotors, is investigated
analytically and through laboratory experimentation. Of particular interest are the role
played by the hat element's depth in in#uencing the three-dimensional vibration of the disk,
and the manner in which the bending and in-plane modes of the disk alone evolve as a hat of
increasing depth is incorporated in the model. The lower vibration modes of disk}hat
structures are shown to be characterized by the numbers of nodal circles NC and diameters
ND present on the disk, as well as the phase relationship between the disk's transverse and
radial displacements due to coupling with the hat element. Such modes map continuously
back to the pure bending and in-plane modes of the disk alone, appear in ordered pairs, and
can exist at close frequencies. Those characteristics are explored particularly with respect to
sensitivities in the disk's thickness and the hat's depth with a view towards shifting particular
natural frequencies, or minimizing transverse disk motion in certain vibration modes.
Results obtained through analysis and measurement of a prototypical disk}hat structure are
applied in a case study with a ventilated automotive brake rotor.
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1. INTRODUCTION

Unwanted noise and vibration associated with the braking process in passenger
automobiles has become an important economic and technological problem in the industry,
and one that encompasses a broad range of disciplines including mechanical vibration,
acoustics, friction, materials, and interface chemistry. Disk brake noise and vibration are
known to involve structural coupling between such components as the rotor, pads, caliper,
and knuckle. Further, depending on the frequency range of interest, the hydraulic system,
body panels, steering column, and other vehicle components can also become active. In an
aggregate sense, the disk brakes of only a few percent of new vehicles exhibit su$cient noise
and vibration to generate signi"cant customer complaints, but the volume and expense of
remediation e!orts, in addition to the perception of reduced product-line quality, place
pressure on brake noise and vibration engineering e!orts.

An acute problem is the so-called &&squeal'' noise, which is typically de"ned as that
occurring within the range 1)5}20 kHz at one or more of the rotor's natural frequencies and
its harmonics. As depicted n Figure 1 for ventilated and solid core designs, rotors have the
distinction of being structural elements, members of the disk}pad friction pair, and e$cient
radiators of sound because of their large surface area. In each case, the rotor comprises the
0022-460X/00/310117#16 $35.00/0 ( 2000 Academic Press



Figure 1. Photographs of typical (a) shallow-hat ventilated, (b) deep-hat ventilated, and (c) solid core brake
rotors having di!erent disk and hat element dimensions.
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&&disk'' element which is in frictional contact with the pads during operation, and the &&hat''
element which provides the geometric o!set necessary for mounting the rotor to the vehicle.
The thickness, inner diameter (I.D.) and outer diameter (O.D.) of the disk; the depth and
thickness of the hat; and the numbers and spacings of the cooling vanes and mounting studs
are some of the geometric parameters that set the rotor's natural frequency spectrum and
vibration modes. Improved understanding of disk}hat structural vibration o!ers one
opportunity for targeted improvements in brake rotor design.

By way of background, in the case of an idealized annular disk without a hat element, the
lower frequency vibration modes fall into two distinct classes: the bending B (transverse)
and in-plane IP (radial}circumferential) modes which are further classi"ed according to the
numbers of nodal circles NC and diameters ND present. Figure 2 depicts variation of the



Figure 2. Natural frequency spectrum for the three-dimensional vibration of a free annular disk as a function of
its thickness; a*"0)5. Over this range of h*, the frequencies of the bending modes B increase with thickness, while
those of the in-plane modes IP are insensitive to it.
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non-dimensionalized B and IP natural frequencies as functions of dimensionless disk
thickness h*, de"ned as the ratio of the disk's physical thickness h to its outer diameter
b. Here and in what follows, the physical circular frequency u is non-dimensionalized
as u* with respect to the material's compression wave speed according to u*"

uJob2/4(j#2k) , where o denotes the volumetric density, and j and k are LameH constants.
The calculation is based on an analysis of the governing equations for three-dimensional
vibration of a disk having arbitrary thickness [1]. As expected on the basis of plate theory,
the natural frequencies of the bending modes increase in a substantially linear manner with
h* over the depicted range of thickness. The frequencies of the in-plane modes, on the other
hand, are largely insensitive to h* over this range.

For illustration, the (0, 2)B and (0, 2)IP modes are shown in Figure 3. The manner in
which those and other bending and in-plane modes change as the hat element is
incorporated in the model, and the degree to which variations in the natural frequencies and
mode shapes can be used to advantage in designing rotors, form emphases of this study. Of
particular interest is the continuous transition from disk-like behavior (in which case the
vibration modes are readily classi"ed as being either bending or in-plane) to coupled}hat
system behavior (where the modes are fully three-dimensional but retain certain
characteristics of the generating B and IP classes).

Literature related to the free vibration of related but di!erent structures includes
treatments of the bending of annular plates having moderate thickness [1}3], and the
three-dimensional motion of solid [4], hollow [5], or arbitrarily shaped [6] cylinders. Also



Figure 3. Two nodal diameter disk (a) bending and (b) in-plane modes; h*"0)04.
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relevant to the present investigation is the vibration of combined plate and cylindrical shell
structures, for instance, where one end of the shell is capped by a circular plate while the
other remains open [7] or where both ends are closed [8]. With regard to the latter, both
substructuring techniques and "nite element analyses have been used to predict the natural
frequencies [9]. An alternative approach based upon the Rayleigh}Ritz method, in which
the shell and plate components are joined through the use of arti"cial springs to facilitate
the selection of expansion functions, is discussed in reference [10]. The case of boundary
conditions modelled through elastic restraints has been examined in the context of such
combined plate}shell systems wherein the structure's modes were categorized as being
plate-controlled, shell-controlled, or strongly coupled [11].

In what follows, a prototypical model of a disk}hat structure is examined in which
vibration of the disk couples with an open cylindrical hat element attached at the disk's
inner periphery. This structure is represented as a reduced-order model of a brake rotor to
the extent that the hat a!ords impedance coupling to the disk along its inner boundary. The
variation in frequency and shape of the vibration modes, beginning at the limiting condition
of a disk alone having moderate thickness, is examined as the hat element is "rst
incorporated, and then as its depth is subsequently increased. In the presence of the hat
element, the bending and in-plane modes of the disk alone are shown to transition into
companion members of pairs denoted (NC, ND)$, for which the magnitudes of the disk's
transverse displacement can be the same, di!erent, or zero depending on the hat's depth.

2. DISK}HAT STRUCTURE MODEL

Figure 4 illustrates the prototypical disk}hat structure used for investigating the
transition of the disk's bending and in-plane modes in the presence of an integral hat
element. The structure is axisymmetric and formed of an isotropic homogeneous elastic
material, and all surfaces are speci"ed to be traction-free. Four dimensional
parameters*a, b, d, and h2represent the disk's inner and outer diameters, the hat depth,
and the common disk and hat wall thickness respectively. All lengths here and in what
follows are non-dimensionalized with respect to b and are henceforth denoted by variables
having an asterisk superscript. For instance, over a representative sampling of eight-brake



Figure 4. Schematic of a prototypical, free, annular, axisymmetric disk}hat structure.
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rotor designs, typical parameter values fall in the ranges 0)5(a*(0)7, 0)05(d*(0)20,
and 0)04(h*(0)10.

The natural frequencies and modes of the disk}hat model were determined through "nite
element discretization. The mesh was re"ned as necessary to produce results which
converged to four signi"cant digits over the discussed range of d*. The structure was
represented by solid brick elements having eight nodes, each with six degrees of freedom in
translation and rotation. Over the disk, seven elements were allocated in the radial
direction, and 60 in the circumferential direction. Over the depth of the hat, one element was
added for each increment of 0)04 in d*.

Laboratory tests were also conducted on solid disk}hat structures that were machined of
aluminum (a"76 mm, b"152 mm, and h"6 mm), and the natural frequencies were
identi"ed for 13 di!erent values of hat depth between 0 and 76 mm. The structures,
supported only on compliant foam, were excited impulsively by a hammer instrumented
with a piezoelectric force sensor; displacement and force time records were recorded; and
a spectrum analyzer characterized the signals in the frequency domain. Peaks in the
measured transfer functions provided the natural frequencies. By transferring an ensemble
of measurements to an available data acquisition computer, vibration modes were
determined through standard techniques of experimental modal analysis.

3. NATURAL FREQUENCY AND MODE STRUCTURE

Values a*"0)5, and h*"0)04 or 0)1, were used in case studies investigating the variation
of natural frequencies and modes over hat depths 0)0(d*(0)5. For the case h*"0)04,
Figure 5 depicts changes in the predicted (solid lines) and measured (points) natural
frequencies; those values agree in the aggregate within 4% over the full d* range. At d*"0,
the values for the lower bending and in-plane frequencies of a moderately thick annular disk
are recovered [1, 3]. As deduced from Figure 2, at d*"0 in Figure 5 the "rst "ve modes
(0, 2)B, (1, 0)B, (1, 3)B, (1, 1)B and (0, 4)B are of the bending class, while the sixth mode
(0, 2)IP is the fundamental in-plane mode. Beginning with the bending and in-plane modes
of the disk alone at d*"0, the loci are extended in Figure 5 for the modes (0, ND) with
2(ND)5, and (1, ND) with 0(ND)3.



Figure 5. Natural frequency spectrum for the three-dimensional vibration of a disk}hat structure as a function
of hat depth; h*"0)04 and a*"0)5. Loci for the (0, 2)$ pair of modes are highlighted. (**), model predictions
(f), measurements.
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As the hat's depth grows, the natural frequencies and mode shapes undergo continuous
transition from those of a disk alone to those of a coupled disk}hat structure. Whereas the
lower modes of the disk alone are readily classi"ed as being members of either the B or IP
classes, such a representation is not appropriate for disk}hat structures to the degree that
their modes involve coupled transverse and in-plane displacement components. For
instance, in treating the vibration of shell}plate structures, references [9, 10] classi"ed
modes according to their symmetry, while in reference [11], a convention was adopted
based on whether motions of the shell or plate were judged to be dominant. In the present
application, each vibration mode of the disk}hat structure maps continuously in the limit of
vanishing d* to either a bending or in-plane mode of the disk alone having designation
(NC, ND). By convention, those modes that transition to a (lower frequency) bending mode
of the disk alone are denoted (NC, ND)!, while those tending toward the companion
(higher frequency) in-plane mode are denoted (NC, ND)#. In addition to identifying the
relative frequencies of the mode pair, the &&$'' su$x also di!erentiates the phase
relationship between transverse vibration of the disk and radial vibration of the hat
element. Pairs of companion modes having di!erent frequencies have also been discussed
within the context of hollow cylinders and shell}plate structures [6, 7].

The natural frequencies for members of the (0, ND)! class of modes grow moderately
with increasing depth over the range considered in Figure 5. Members of the (1, ND)!
class have frequencies which do not behave monotonically but are generally maximized



Figure 6. Evolution of the (0, 2)$ mode shapes as sampled along their frequency loci in Figure 5.
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near d*+0)1 for the lower modes. A hat depth near that value could be considered optimal,
for instance, in the sense that those modes are sti!ened.

The locus for the (0, 2)# mode generally decreases in Figure 5, and changes in sequence
from the sixth mode at d*"0 to the third at d*"0)35. In short, the mode sequence shifts
with hat depth with loci for the &&$'' pair of modes generally approaching one another. The
transition, or &&morphing'', of the (0, 2)$ mode shapes is illustrated in Figures 3 (at d*"0)
and 6 (at d*"0)17, 0)33, and 0)50). At d*"0, the (0, 2)$ pair reduces to the two nodal
diameter bending and in-plane modes of an idealized disk, but with increasing d*, the modes
transition to become generally three dimensional in character. In fact, from the standpoint
of measurements mode on the disk alone, and with respect only to the speci"cation of NC
and ND for the disk's transverse motion, those modes are not easily distinguished at
d*"0)33 and 0)5 to the degree that both the (0, 2)! and (0, 2)# modes have decidedly
bending-like appearances with substantially similar displacements over the surface of the
disk itself. Transverse motion of the disk dominates the displacement "eld of the (0, 2)#
mode at a frequency near that of (0, 2)! for substantial hat depths, notwithstanding its
genesis as an in-plane mode of the disk alone.

A further distinction between the (0, 2)$ modes is seen in Figure 7, where they are
shown at d*"0)33 in both isometric and section views. In the case of (0, 2)!, transverse
deformation of the disk and radial displacement of the hat occur in-phase, and precisely the
opposite is true for (0, 2)#. A cross-section of the disk rotates in (0, 2)! with respect to the
point of connection between the disk and hat elements, with motion of the two elements
occurring in the same direction. The cross-section shown in Figure 7 (0, 2)#, on the other
hand, exhibits both radial translation of the connection point and rotation about it.



Figure 7. Isometric and cross-sectional views of the (0, 2)$ modes at d*"0)33, depicting similar transverse
displacements over the disk but di!ering phase relationships between the disk and hat elements. The section is
taken along an antinode of the disk's transverse displacement.
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4. BENDING AND IN-PLANE DISPLACEMENT COMPONENTS

When the common disk and hat thickness is increased to h*"0)1, loci for the (0, 2)$
and (0, 3)$ pairs of modes approach at values d*+0)3 and 0)5, respectively, as indicated in
Figure 8. Frequencies of the individual (0, 2)$ and (0, 3)$ pairs remain distinct, however,
for large d* owing to di!erences in strain energy, behavior also observed in companion
hollow cylinder [6] and shell}plate [7] structures. At higher frequencies not shown in
Figure 8, the loci of (0, 4)$, (0, 5)$, and higher ND pairs also approach one another.
In a di!erent process, the loci for the (1, ND)! family, with ND"0, 1, 2,2, exhibit
coalescence at hat depth values above 0)5 in a manner analogous to the development of
frequency clusters in the vibration of long cylinders [12].

Several plan views of the (0, 3)$ modes are shown in Figure 9. At d*"0, the (0, 3)$
modes have qualitatively distinct appearances, but those di!erences diminish as the hat
with "nite depth is introduced. At d*"0)5, for instance, the disk elements alone in both the
(0, 3)! and (0, 3)# modes have sensibly similar shapes. A distinction between these
modes, however, is the di!erent phase relationship between the disk's transverse motion
and the hat's radial motion at larger d* values. At d*"0)5, the disk's (upward) transverse
displacement and the hat's (outward) radial displacement in (0, 3)! occur with the same
phase, but those displacements are out-of-phase in the slightly higher frequency (0, 3)$
mode. As for (0, 3)$ here and (0, 2)$ in Figure 6, such modes are each dominated by
transverse deformation of the disk, notwithstanding the continuous mapping of (0, 3)#
and (0, 2)# back to pure in-plane modes of an annular disk alone.

Speci"cally, Figures 10 and 11 quantify transition of the transverse (u
z
) and combined

radial (u
r
) and circumferential (uh) displacements for the (0, 2)$ and (0, 3)$ modes, as



Figure 8. Natural frequency spectrum for the three-dimensional vibration of a disk}hat structure as a function
of hat depth; h*"0)1 and a*"0)5. Loci for the (0, 2)$ and (0, 3)$ pairs of modes are highlighted.
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taken at the disk's midplane around its outer periphery. The displacement components
of those modes have dependencies u

r
"A

r
cos(ND h), uh"Ah sin(ND h), and u

z
"

A
z
cos(ND h) [7]. Beginning in Figure 10 with (0, 2)!, the mode shape is normalized at

each d* such that the peak value of the out-of-plane displacement is unity, namely DA
z
D"1.

That component is used as the point of reference since (0, 2)! transitions to a bending
mode of the disk alone. The magnitude of combined u

r
and uh motions, on the other hand, is

measured by JA2
r
#A2h , which is proportional by the factor J2 to the root-mean-square

average of in-plane displacement. The in-plane displacement norm grows from zero at
d*"0 to the maximum of 0)17 at d*+0)2 before decreasing for larger values of d*. Thus,
the bending mode of the disk, following introduction of the hat, evolves into
a three-dimensional shape in which the transverse displacement of the disk continues to
dominate the in-plane displacement by a factor of at least 5 : 1 throughout the entire range
of hat depths examined.

A rather di!erent situation develops for the companion (0, 2)# mode as depicted in the
lower element of Figure 10. Since this mode maps to a pure in-plane mode of the disk alone,

DA
z
D is compared to JA2

r
#A2h by alternatively scaling the in-plane displacement norm to

unity. At d*"0, the transverse displacement begins from zero, reaches the local maximum
of 0)26 at d*"0)08, passes through zero at d*"0)186, and rises to the value 0)90 at
d*"0)5. The cusp-like behavior at d*"0)186 represents an A

z
zero crossing and is an

artifact of the absolute value operation. At d*"0)08, for instance, the in-plane displac-
ements dominate the transverse motion by a factor of 4 : 1. However, for values of hat depth



Figure 9. Evolution of the (0, 3)$ mode shapes as sampled along their loci in Figure 8. The di!ering phase
relationships between the disk and hat are evident in the views at d*"0)25 and 0)5.
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greater than d*+0)35, the transverse displacement has grown to become substantially
similar in magnitude to that of the in-plane displacements. In fact, at d*"0)5, the in-plane
displacement magnitude is some 90% of the transverse magnitude. Thus, the (0, 2)# mode
is no longer fairly described as being &&in-plane'', and from the standpoint of a vibration
measurement performed on the disk itself of the disk}hat structure (as is conventional) twin
two-nodal diameter modes separated by some 18% in frequency would appear to be
present, even for this axisymmetric model.

Figure 11 presents analogous results for the (0, 3)$ pair. Transverse displacement
dominates in-plane motion of (0, 3)! by a factor of some 7 : 1 over the entire d* range. For
(0, 3)#, on the other hand, although DA

z
D has a local maximum at d*"0)063, DA

z
D and

JA2
r
#A2h grow to become identical (unity) at d*"0)370. Further, the transverse

displacement vanishes at d*"0)168, a value which is pleasingly near the corresponding
point where DA

z
D"0 for (0, 2)#in Figure 10. Both zero crossing values fall within the range

of d* that is judged to be practical from the standpoint of typical rotor design. Transition of
the (0, 3)# mode is depicted in the sequence of Figure 12, where the shapes are sampled at
the hat depths indicated by the bold data points in Figure 11. In both Figures 10 and 11,



Figure 10. Norms of the disk's displacement components for the (0, 2)$ pair of modes as a function of hat
depth; h*"0)1 and a*"0)5.

Figure 11. Norms of the disk's displacement components for the (0, 3)$ pair of modes as a function of hat
depth; h*"0)1 and a*"0)5. Mode shapes sampled at the highlighted points are illustrated in Figure 12.
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Figure 12. Isometric and section views of the (0, 3)# mode sampled at the hat depths indicated in Figure 11 in
order to demonstrate in-phase disk transverse and hat radial motions at d*"0)063, vanishing transverse
displacement at d*"0)168, and out-of-phase disk transverse and hat radial motions at d*"0)370.

128 J. C. BAE AND J. A. WICKERT
there is no zero (or sign change) in the transverse displacement component, relative to that
of the in-plane component, for either (0, 2)! or (0, 3)!. That is, both modes retain the
same phase relationship between u

z
and u

r
over the full range of d* as depicted in, for

instance, the cross-sectional view of Figure 7. On the other hand, zero crossings do occur for
(0, 2)# and (0, 3)#, a situation which also appears to be the case for other (NC, ND)#
modes that have been examined.

5. BRAKE ROTOR APPLICATION

A parameter study in hat depth is used to illustrate application of the "ndings to the
vibration analysis of brake rotors using the uppermost rotor shown in Figure 1 as the
benchmark design. Figure 13 depicts a collocated point transfer function of the rotor as
measured in the transverse direction on the outer periphery of the disk. The spectral peaks
for the (0, 2)$ modes are labelled, where those modes were identi"ed using standard
techniques of experimental modal analysis with an impact hammer and a triaxial
accelerometer. Other peaks shown correspond to modes having di!erent NC and ND over
the surface of the disk, but the salient point here is the presence of two modes, as identi"ed
through transverse vibration measurement, having essentially identical nodal patterns on
the surface of the disk.



Figure 13. Collocated point transfer function of the uppermost rotor shown in Figure 1, as measured at the
disk's outer pariphery in the transverse direction.

Figure 14. Section views of the rotor's predicted (a) (0, 2)! and (b) (0, 2)# modes.
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A "nite element model of the rotor accounted for the geometry of the inner and outer
disks, the pattern of cooling "ns between the disks, and the hat structure. The overall
dimensions of the rotor were a"129 mm, b"245 mm, and h"18 mm. By using the value
3540 m/s for the compression wave speed in cast iron, as determined through a least-squares
"t of the model to the frequency measurements over a 6)4 kHz bandwidth, the rotor model
predicted frequencies 1)07 and 3)17 kHz ((0, 2)$), and 2)68 and 5)36 kHz ((0, 3)$).

Figure 14 depicts through cross-section views the predicted phase relationships between
u
r
and u

z
in the (0, 2)$ modes, analogous to the results of Figure 7 for the prototypical

disk}hat model. The radial and transverse displacements as developed around the disk's
outer periphery were measured for the (0, 2)$ pair of modes, with results shown in Figure
15. Although these modes di!er in frequency by some 2)18 kHz, they each contain two
nodal diameters and no nodal circles over the disk's surface, and have signi"cant transverse
motion relative to in-plane displacement. In Figure 15, the modal amplitudes are
normalized with respect to the maximum value (unity) of u

z
. The radial displacement for

(0, 2)# is slightly larger than that for its companion (0, 2)! to the extent that the former
evolved from an in-plane mode. For this benchmark case at least, the distinction between
the rotor's two nodal diameter &&bending'' and &&in-plane'' modes blurs, with comparable



Figure 15. Measurements of the brake rotor's radial and transverse displacement components in the (0, 2)$
modes at 1)07 and 3)25 kHz, respectively, as taken around the disk's outer periphery.

130 J. C. BAE AND J. A. WICKERT
magnitude displacements occurring in the transverse and radial directions, but with
opposite phase, for each.

Figure 16 shows the predicted natural frequencies of the rotor as a function of hat depth,
with 18 mm being the rotor's design point. The natural frequencies for the (0, 2)$ and
(0, 3)$ modes vary in a manner analogous to that seen in Figures 5 and 8. The natural
frequency for a member of the (0, ND)! class of modes grows moderately, while that for
each (0, ND)# mode decreases, with increasing hat depth.

6. SUMMARY

In this investigation, the role played by a hat element in evolving the in-plane and
transverse modes of an idealized disk of moderate thickness into fully three-dimensional
modes, which present signi"cantly coupled motions in the in-plane and transverse
directions, is examined. In particular, transition of the bending and in-plane modes of the
disk alone into coupled (NC, ND)$ pairs is emphasized, in which case the magnitudes of
the disk's transverse displacement in the companion modes can be the same, di!erent, or
zero depending on the value taken by the hat's design parameter d*. Other design
parameters, such as the hat's wall thickness, could o!er similar behavior and design
#exibility.

Vibration of brake rotors is conventionally described in terms of motion of the disk alone
by specifying the number of nodal diameters and circles present in the transverse



Figure 16. Predicted variation of the rotor's natural frequencies in the (0, 2)$ and (0, 3)$ pairs of modes as
a function of hat depth.
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deformation of the disk itself. That description is not preferred to the degree that mode pairs
(NC, ND)$ exist, each potentially having signi"cant transverse displacement and di!ering
frequencies which can fall in the same general range. Measurements and parameter studies
performed on a benchmark ventilated rotor demonstrate in application the presence of
a pair of modes having the same number of nodal diameters and circles on the disk (which
are emphasized in the brake noise and vibration community) but di!erent frequency and
phase coupling with the hat (which are not).

In the case studies evaluated here, disk}hat structures having deep hats have as one
characteristic the property that the transverse displacements for the (NC, ND)# modes
can be of the same magnitude as the in-plane displacements themselves. Such modes are
judged to be excited by in-plane forces, such as frictional loading, and capable of responding
with transverse vibration of the disk, with vibration and noise radiation occurring
subsequently. Conversely, certain values of hat depth exist at which the transverse
displacement component of the (NC, ND)# modes vanishes, a design point which is viewed
as desirable to the extent that even in the presence of signi"cant excitation of such modes, the
disk would not respond in the transverse direction. Although many mechanisms are thought
to be responsible for the coupling process between in-plane and transverse motions of the
disk, including normal load variations and caliper or pad dynamics, out-of-plane motion
occurring in certain disk modes in judged to be one contributing factor. Designs at critical
values of d* can avoid transverse displacements being present for certain modes.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation and the authors' group of
industrial partners.



132 J. C. BAE AND J. A. WICKERT
REFERENCES

1. K. I. TZOU, J. A. WICKERT and A. AKAY 1998a ASME Journal of <ibration and Acoustics 120,
384}391. In-plane vibration modes of arbitrarily thick disks.

2. S. S. RAO and A. S. PRASAD 1975 Journal of Sound and <ibration 42, 305}324. Vibrations of
annular plates including the e!ects of rotatory inertia and transverse shear deformation.

3. J. R. HUTCHINSON 1984 ASME Journal of Applied Mechanics 51, 581}585. Vibrations of thick free
circular plates, exact versus approximate solutions.

4. A. W. LEISSA and J. SO 1995 Journal of the Acoustical Society of America 98, 2136}2141. Accurate
vibration frequencies of circular cylinders from three-dimensional analysis.

5. J. SO and A. W. LEISSA 1997 ASME Journal of<ibration and Acoustics 119, 89}95. Free vibrations
of thick hollow circular cylinders from three-dimensional analysis.

6. K. M. LIEW, K. C. HUNG and M. K. LIM 1995 ASME Journal of Applied Mechanics 62, 718}724.
Vibration of stress-free hollow cylinders of arbitrary cross section.

7. B. L. SMITH and E. E. HAFT 1967 AIAA Journal 5, 2080}2082. Vibration of a circular cylindrical
shell closed by an elastic plate.

8. S. TAKAHASHI and Y. HIRANO 1970 Bulletin of the JSME 13, 240}247. Vibration of a combination
of circular plates and cylindrical shells. (First report: a cylindrical shell with circular plates at
ends.)

9. M. S. TAVAKOLI and R. SINGH 1990 Journal of Sound and <ibration 136, 141}145. Modal analysis
of a hermetic can.

10. J. YUAN and S. M. DICKINSON 1994 Journal of Sound and <ibration 175, 241}263. The free
vibration of circularly cylindrical shell and plate systems.

11. L. CHENG and J. NICOLAS 1992 Journal of Sound and <ibration 155, 231}247. Free vibration
analysis of a cylindrical shell-circular plate system with general coupling and various boundary
conditions.

12. K. I. TZOU, J. A. WICKERT and A. AKAY 1998b ASME Journal of Applied Mechanics 65, 797}803.
Frequency clusters in the spectrum of annular cylinders.


	1. INTRODUCTION
	Figure 1
	Figure 2
	Figure 3

	2. DISK}HAT STRUCTURE MODEL
	Figure 4

	3. NATURAL FREQUENCY AND MODE STRUCTURE
	Figure 5
	Figure 6
	Figure 7

	4. BENDING AND IN-PLANE DISPLACEMENT COMPONENTS
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	5. BRAKE ROTOR APPLICATION
	Figure 13
	Figure 14
	Figure 15

	6. SUMMARY
	Figure 16

	ACKNOWLEDGMENT
	REFERENCES

